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In Fig. 1 the broken line represents the variation with
temperature of V¥, where V (= 0-866 ca?) is the structure
cell volume. The slope of this curve is approximately
uniform and the curve passes smoothly through the
transition region in the neighbourhood of 400° C.

Discussion
In CrSb the magnetic atoms (Cr) are arranged in plane

sheets perpendicular to [0001]. The results just described’

indicate that the distance between these sheets decreases
anomalously as the temperature is lowered through the
transition -point. This effect takes place without any
sudden change of structure cell volume or change of
crystal symmetry. According to Snow (1952) the magnetic
moments of the chromium atoms in a given (0001)
plane are all parallel, but moments in neighbouring
planes are antiparallel. Thus the antiferromagnetic ex-
change forces are dirccted predominantly along the [00G1]
direction, an interpretation which is strongly supported
by the present work.

It is interesting to note that MnTe, which is also an
antiferromagnetic compound with the NiAs-type struc-
ture, undergoes a similar decrease of c/a (Greenwald,
1952) on being cooled through the transition tempera-
ture near 35° C. The magnitude of the change for MnTe
is, however, considerably smaller than in CrSb.
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The transition temperature of CrSb has been variously
reported as 400° C. (Foéx & Graaf, 1939) and 450° C.
(Snow, 1952). It is not possible to obtain a more precise
value from the shape of the magnetic susceptibility—
temperature curve, as the maximum in this curve is
exceptionally broad. If we assume that the lattice
changes in CrSb appear as soon as the temperature falls
below T';, we can determine the value of 7'; from Fig. 1
as 420410° C.
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Enumeration of physical constants of crystals. By A. RaAEMAN, Osmania University, Hyderabad, Deccan,

India

(Received 24 February 1953)

Bhagavantam & Suryanarayana (1949) have given a
method by which the number of constants necessary to
specify different physical properties of crystals can be
directly obtained by using a group theoretical formula
which gives the number of times a certain irreducible
representation of a group appears in a given representa-
tion; these authors have considered all the 32 crystal
classes. An alternative method for the same purpose has
been given by Jahn (1949) whose results confirm in every
case those of Bhagavantam & Suryanarayana; in ad-
dition Jahn has also considered the case of a body with
complete axial symmetry, his group R, and one with
complete axial symmetry together with an inversion,
his group R%,. The result for these two cases are given
by Jahn in his Table 1 (where the heading for the fifth
column has been misprinted: it should be R instead
of R.). Jahn has further considered the groups
Coos Coony D, ete.

For the sake of completeness, an effort has been made
to extend the method of Bhagavantam & Suryanarayana
to give the number of constants where the symmetry
group is no longer finite, making it necessary to use group
integration instead of a finite summation in the formula
mentioned above.

In the following we shall consider the groups which in
the notation of Jahn are R, R, C., Cooy Ok, Dy
and D%, For the first two we need integration over the
group of all orthogonal transformations in three dimen-
sions for which the ‘volume element’ is sin? lede,
0 < ¢ < =, while for the rest the integration is essentially
over a group of orthogonal transformations in two dimen-

sions for which the ‘volume element’ is simply dg,
0 < ¢ < 27, Let y(p) denote the character of a rotation
@ about an axis and y(p) that of a rotation-reflexion ¢.
These are given in Table 1 of Bhagavantam & Suryana-
rayana; we need not specify the direction of the axis
of rotation because the characters of the representations
we are concerned with depend only on ¢.

The required numbers are then obtained from the
following formulae:

(1) Rw,n=sox(¢)sin2 <Pd‘P/S sin? }pdg ,

T T

(2) Réo,n—goix(w)iw(n )] sin® 2¢d¢/2sosm2%¢d¢,
(3) Ceoym SO x(tp)dqv/s dy,
2n
(4) Coony So [x(tp)iw(O)]dtp/ \ @
27
(5) =SO [x(w)iw(qJ)]dtp/ {, a0
27
(6) Deoyn SO [x(¢)+x(n)]d¢/ { @
M Din={ [x(tp)ﬂ:w(¢)+z(n):bw(0)]/ { 2w,

0
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Table 1

No. Symmetry 1 2 3,3c 4,5 6 7 8a 8 9 10 11 12 13 En. O.A.
33 Roo 1 0 1 1 0 1 2 2 2 3 0 3 4 1 1
34 R, 1 0 1 1 0 0 2 2 2 3 0 3 4 0 0
35 Cxo 1 1 2 3 4 7 5 8 12 19 11 10 22 1 2
36 Coop 1 1 2 2 3 4 5 6 7 10 8 9 16 0 0
37 cl, 1 0 2 3 0 0 5 8 12 19 0 10 22 0 0
38 Do 1 0 2 2 1 3 5 6 7 10 3 9 16 1 2
39 Dg, 1 0 2 2 0 0 5 6 7 10 (1] 9 16 0 0

where the negative sign has to be taken with ¢ in the
case of optical activity and enantiomorphism.

Using x(¢) and y(p) from Table 1 of Bhagavantam &
Suryanarayana in the above formulae we get the integers
shown in Table 1, which can be placed at the bottom of
their Table ‘2.

These results are all in agreement with those of Jahn
in the paper already mentioned.
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I am indebted to Prof. L. Bouckaert for his valuable
advice and to Dr Jahn for helpful criticism.
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Three-dimensional Fourier summations on a high-speed digital computer. By S. W. Maver
and K. N. TRUEBLOOD, Department of Chemistry, University of California, Los Angeles 24, California, U.S. A.

(Received 13 February 1953)

The application of digital computers to crystal-structure
investigation has been receiving increased attention con-
comitant with the further development and increased
availability of such computers (Bennett & Kendrew,
1952; Ordway, 1950, 1952; Shoemaker, 1952). We have
been using the National Bureau of Standards Western
Automatic Computer (Huskey, 1950) in calculations for
our studies of the structures of sulfamide (Mayer &
Trueblood, 1953) and cyclopropylamine hydrochloride.
Three-dimensional Fourier summations over one-six-
teenth of the unit cell of sulfamide, including all of the
180 observed reflections from this crystal (space group
Fdd2), have been carried out in less than 35 min. of
computing time. Because the asymmetric unit for sulfa-
mide is contained in one-sixteenth of the unit cell the
time required for computing was less than can ordinarily
be expected, but it is estimated that in most cases not
more than 90 min. would be needed.

Data is fed into the computer on I.B.M. cards at the
rate of 240 cards per minute. Each card holds the re-
quired data for ten spectra—the indices, observed struec-
ture factors and calculated phases. (The structure factors
were also calculated on the computer.) These ecards,
containing information in the binary system, are prepared
automatically from decimally punched cards. Several
duplicate packs of the cards are prepared to expedite the
necessary recycling operations. The Fourier summation
is then carried out in the machine as a programmed
sequence of basic operations. The memory of the com-
puter at present holds 256 36-digit binary numbers; the
machine performs such operations as addition and sub-
traction at the rate of more than nine hundred thousand
per minute. Computed results are punched decimally on
I.B.M. cards, at a maximum rate of fifty cards per minute.
“Each card contains fifteen values of the electron density ;
in sulfamide, this corresponds to one line (fifteen one-
sixtieths) in the (z,y) grid at a constant value of z.
Upon completion of the map for one z plane, an increment

is automatically added to z, and the cycle of programmed
calculations is repeated until the electron-density distri-
bution has been calculated over the desired range of z.

Although the interval now employed for the grid of the
electron-density map is 1/60 of the unit cell edge, it is
feasible to change the interval to 1/120 or 1/30. The
Fourier equations employed are of the type in which all
the indices are positive (Lonsdale, 1936). Although we
have to date programmed only for space groups Fdd2
and Pbn2,, our programming may easily be extended to
any space group for which the sumrnation terms can
conveniently be put into the form

LA cos cos cos

+ %‘%‘%‘ [F ] sin 2n(lz—o) - sin 2nha - sin 2nky .
Three-dimensional Patterson functions can of course be
rapidly computed in a similar fashion. We expect to
present a fuller description of these computing procedures
with an account of the structure of sulfamide when our
investigation of this substance has been completed.

We wish to express our gratitude to the Institute for
Numerical Analysis of the National Bureau of Standards
on this campus for the use of the SWAC and other
computing facilities.
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